
Smart Contract Audit Report
for

Tastemakerz

Version 0.1

Trustlook Blockchain Labs

Email: bd@trustlook.com

Project Overview

Project Name Tastemakerz

Contract codebase N/A

Platform EVM compatible blockchains

Language Solidity

Submission Time 2023.02.22

Report Overview

Report ID TBL_20230222_00

Version 1.0

Reviewer Trustlook Blockchain Labs

Starting Time 2023.02.22

Finished Time 2023.02.24

@ Copyright 2023 Trustlook - All rights reserved

Disclaimer

Trustlook audit reports do not provide any warranties or guarantees on the
vulnerability-free nature of the given smart contracts, nor do they provide any indication
of legal compliance. The Trustlook audit process is aiming to reduce the high level risks
possibly implemented in the smart contracts before the issuance of audit reports.
Trustlook audit reports can be used to improve the code quality of smart contracts and
are not able to detect any security issues of smart contracts that will occur in the future.
Trustlook audit reports should not be considered as financial investment advice.

@ Copyright 2023 Trustlook - All rights reserved

About Trustlook Blockchain Labs

Trustlook Blockchain Labs is a leading blockchain security team with a goal of security
and vulnerability research on current blockchain ecosystems by offering
industry-leading smart contracts auditing services. Please contact us for more
information at (https:/www.trustlook.com/services/smart.html) or Email
(bd@trustlook.com)

The Trustlook blockchain laboratory has established a complete system test
environment and methods.

Black-box Testing The tester has no knowledge of the system being
attacked. The goal is to simulate an external hacking or
cyber warfare attack.

White-box Testing Based on the level of the source code, test the control
flow, data flow, nodes, SDK etc. Try to find out the
vulnerabilities and bugs.

Gray-box Testing Use Trustlook customized script tools to do the security
testing of code modules, search for the defects if any
due to improper structure or improper usage of
applications.

@ Copyright 2023 Trustlook - All rights reserved

https://www.trustlook.com/services/smart.html
mailto:bd@trustlook.com

Introduction

By reviewing the smart contract’s implementation, this audit report has been prepared to
discover potential issues and vulnerabilities of their source code. We outline in the
report about our approach to evaluate the potential security risks. Advice to further
improve the quality of security or performance is also given in the report.

About Tastemakerz

Have fun while learning and earning your way to become a Web 3 Tastemakerz through
a decentralized education guild. The project is backed by Animoca subsidiary, Forj with
a mission to drive true Web 3 adoption.

@ Copyright 2023 Trustlook - All rights reserved

About Methodology

To evaluate the potential vulnerabilities or issues, we go through a checklist of
well-known smart contracts related security issues using automatic verification tools and
manual review. To discover potential logic weaknesses or project specific
implementations, we thoroughly discussed with the team to understand the business
model and reduce the risk of unknown vulnerabilities. For any discovered issue, we
might test it on our private network to reproduce the issue to prove our findings.

The checklist of items is shown in the following table:

Category Type ID Name Description

Coding
Specification

CS-01 ERC Standards The contract is using ERC standards.

CS-02 Compiler Version The compiler version should be specified.

CS-03 Constructor Mismatch The constructor syntax is changed with Solidity versions. Need extra
attention to make the constructor function right.

CS-04 Return standard Following the ERC20 specification, the transfer and approve functions
should return a bool value, and a return value code needs to be added.

CS-05 Address(0) Validation It is recommended to add the verification of require(_to!=address(0)) to
effectively avoid unnecessary loss caused by user misuse or unknown
errors.

CS-06 Unused Variable Unused variables should be removed.

CS-07 Untrusted Libraries The contract should avoid using untrusted libraries, or the libraries need
to be thoroughly audited too.

CS-08 Event Standard Define and use Event appropriately

CS-09 Safe Transfer Using safeTransfer/transfer to send funds instead of send.

CS-10 Gas Consumption Optimize the code for better gas consumption.

CS-11 Deprecated Uses Avoid using deprecated functions.

CS-12 Sanity Checks Sanity checks when setting key parameters in the system

CS-13 Typo Typo in comments or code

CS-14 Fallback Function Splitting fallback and receive function

CS-15 Comment Standard Use clear consistent comments with code semantics

CS-16 Naming Standard Use standard method to name functions and variables

@ Copyright 2023 Trustlook - All rights reserved

Coding
Security

SE-01 Integer overflows Integer overflow or underflow issues.

SE-02 Reentrancy Avoid using calls to trade in smart contracts to avoid reentrancy
vulnerability.

SE-03 Transaction Ordering
Dependence

Avoid transaction ordering dependence vulnerability.

SE-04 Tx.origin usage Avoid using tx.origin for authentication.

SE-05 Fake recharge The judgment of the balance and the transfer amount needs to use the
“require function”.

SE-06 Replay If the contract involves the demands for entrusted management, attention
should be paid to the non-reusability of verification to avoid replay attacks.

SE-07 External call checks For external contracts, pull instead of push is preferred.

SE-08 Weak random The method of generating random numbers on smart contracts requires
more considerations.

Additional
Security

AS-01 Access control Well defined access control for functions.

AS-02 Authentication
management

The authentication management is well defined.

AS-03 Semantic Consistency Semantics are consistent.

AS-04 Functionality checks The functionality is well implemented.

AS-05 Business logic review The business model logic is implemented correctly.

The severity level of the issues are described in the following table:

Severity Description

Critical The issue will result in asset loss or data manipulations.

High The issue will seriously affect the correctness of the business
model.

Medium The issue is still important to fix but not practical to exploit.

Low The issue is mostly related to outedate, unused code snippets.

Informational This issue is mostly related to code style, informational
statements and is not mandatory to be fixed.

@ Copyright 2023 Trustlook - All rights reserved

Audit Results

The Trustlook security team has used the team's analysis tools and manual audit
process to audit the project. No obvious risks were identified during the audit. There are
some comments and some enhancement suggestions in the following sections.

Scope

Following files have been scanned by our internal audit tool and manually reviewed and tested
by our team:

File names Sha1

ERC1155SelfMinter.sol 5e236b066848b188312e1d4887e515d64ff9323e

@ Copyright 2023 Trustlook - All rights reserved

Summary

Issue ID Severity Location Type ID Status

TBL_SCA_001 HIGH ERC1155SelfMinter.sol:332 AS-01 Fixed

TBL_SCA_002 MEDIUM ERC1155SelfMinter.sol:250
ERC1155SelfMinter.sol:256

AS-04 Fixed

TBL_SCA_003 LOW ERC1155SelfMinter.sol:394 AS-05 Fixed

TBL_SCA_004 LOW ERC1155SelfMinter.sol:85
ERC1155SelfMinter.sol:93

AS-04 Fixed

TBL_SCA_005 INFO ERC1155SelfMinter.sol:49
ERC1155SelfMinter.sol:52

CS-10 Fixed

TBL_SCA_006 INFO ERC1155SelfMinter.sol:48
ERC1155SelfMinter.sol:51

CS-15 Fixed

@ Copyright 2023 Trustlook - All rights reserved

Details

• ID: TBL_SCA-001

• Severity: HIGH

• Type: AS-01 (Access control)

• Description:

The function burn() is set as public and anyone can burn NFT tokens for any address
from. Players’s tokens could be burned by anonymous users.

• Remediation:

This issue has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-002

• Severity: MEDIUM

• Type: AS-04 (Functionality checks)

• Description:

The functions setTierMerkleRoots() and setLimitPerWalletPerTier() set the new tiers
data starting from index 0. However, the array is starting from 1.

• Remediation:

This issue has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-003

• Severity: LOW

• Type: AS-05 (Business logic review)

• Description:

The function _checks() is used to validate the payment fee for minting new NFT tokens.
However, it seems the payment fee is not dependent on the amount.

It is recommended to design a better fee calculation logic for minting specific amounts of
NFT tokens.

• Remediation:

This issue has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-004

• Severity: LOW

• Type: AS-04 (Functionality checks)

• Description:

The members num and walletAddress are not necessary to be included in the structures
Tier and Partner since they are used as the key for the mappings tiers and partners.

• Remediation:

The issue has been partially fixed in a new revision.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-005

• Severity: INFO

• Type: CS-10 (Gas consumption)

• Description:

The mappings maxSupplyPerId and totalSupplyPerId are defined to use the same key
and both used at the same locations.

It is recommended to merge them to mapping (uint256 => Supply) and define a data
structure Supply to have max and total. In this way the mapping calculation for both variables
could be simplified and gas consumption is reduced.

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

• ID: TBL_SCA-006

• Severity: INFO

• Type: CS-15 (Comment standard)

• Description:

The comments for the mappings maxSupplyPerId and totalSupplyPerId are not
consistent with the code. It should be stated as follows:

// TokenId => Max Supply
// TokenId => Total Supply

• Remediation:

This has been fixed in a new release.

@ Copyright 2023 Trustlook - All rights reserved

